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Turbulent bores and hydraulic jumps 
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Denmark, Building 115, DK 2800 Lyngby, Denmark 

(Received 22 February 1982 and in revised form 13 August 1982) 

A theoretical model for the velocity field and the surface profile of bores and hydraulic 
jumps is developed. The turbulence is assumed to be concentrated in a wedge that 
originates a t  the toe of the front and spreads towards the bottom, and the turbulent 
closure used is a simplified k-E model allowing for non-equilibrium in the turbulent 
kinetic energy. The flow equations are satisfied in depth-integrated form (method of 
weighted residuals), and measured deviations from static pressure are analysed and 
shown to have a negligible effect on the results. Comparison with measurements shows 
good agreement, but there is a clear need for further experimental results in the highly 
turbulent region near the free surface. Some basic mechanisms of the flow are 
discussed and explained from the theory. 

1. Introduction 
Bores and hydraulic jumps are nearly equivalent flows. The jump is a stationary 

transition to subcritical flow that may occur in a supercritical stream, and a bore is 
a transition to a higher water level propagating into quiescent water of a lower level. 

The difference between a bore and a hydraulic jump lies in the bottom boundary 
layer generated in the latter case owing to the flowing water. I n  a bore a much weaker 
bottom boundary layer is initiated a t  the front, and i t  will not be significant until 
far behind the bore and well outside the region in which we are interested. 

We shall consider these two flows together since we intend to neglect the bottom 
boundary layer and concentrate on the violent turbulence in the front and near the 
surface and its effect on the flow pattern. This assumption will be justified. Hence 
in our considerations a bore may be turned into a hydraulic jump by watching it from 
a coordinate system moving with the bore. 

The purpose of the present paper is to develop a theoretical model for such bores 
and jumps using a simple turbulence model to describe the flow, the shear stresses 
and the energy dissipation in the flow. 

Our interest in these flows stems from the observation that the front, of a periodic 
wave in the surf zone has many features in common with the steady bore/hydraulic 
jump. 

In  the literature, studies of the propagating bores are usually made by idealizing 
the bore to a moving discontinuity. Then the surrounding flow is described by the 
nonlinear shallow-water equations (see e.g. Peregrine 1972; Svendsen & Jonsson 
1976), which are studied either by the method of characteristics (as e.g. Peregrine 
1974) or numerically (as e.g. by Hibberd & Peregrine 1979) or by approximate 
methods (Keller, Levine & Whitham 1969). In  this type of model, however, the shape 
of the front and the flow beneath i t  are not described a t  all. 

t Present address: Danish Hydraulic Institute, Horsholm, Denmark. 
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Previous works on the detailed flow patterns in a hydraulic jump have (with a few 
exceptions) all been experimental, and a considerable number of investigations have 
been published with measurements of surface profiles, mean velocities and turbulence 
characteristics. 

For a detailed survey of investigations up to 1967 we refer to Itajaratnam (1967). 
It may be mentioned that one of the first examples was Bakhmeteff & Matzke (1936), 
who, in addition to a discussion of the overall flow characteristics such as height 
(BBlanger 1828) and energy dissipation for a given Froude number 

4 = %(gd,)-4 (1.1) 

also presented measurements of the surface profile which will be used for comparisons 
in $6. 

Measurements of surface profiles have also been reported by Rouse, Siao & 
Nagaratnain (1939, who measured velocities in a wind tunnel in which they modelled 
the jump by replacing the free surface by a solid wall shaped according to 
measurements in a hydraulic flume. 

Velocity measurements were also made by Resch & Leutheusser (1972a, b )  and 
by Resch, Leutheusser & Coantic (1976). These publications (as well as Rouse et al. 
- 1958) included data and discwssions of various turbulent flow quantities such as z, 
wt2  and u'w'. 

Lately Battjes & Sakai (1981) have presented velocity measurements in a bore-like 
flow generated behind an airfoil suspended in flowing water. Their results, however, 
are not directly comparable with the flow beneath a hydraulic. jump because of the 
large depth of water beneath the airfoil. 

A few contributions suggest theoretical models for the flow in a hydraulic jump. 
Both Rajaratnam (1965) and Narayanan (1975) suggested that the turbulent flow 

in a jump resembles that in a wall jet. A thooretical approach based on the wall jet 
analogy was given by Narayanan. He assumed one type similarity in the bottom 
boundary layer and another type in the outer layer. The pressure was assumed 
hydrostatic and the shear stresses were described by empirical expressions known 
from wall jets and shear layers respectively. The set-up used, however, resulted in 
a discontinuity in the free surface. 

A different model was analysed by Tsubaki (1950). He assumed, however, that the 
turbulence was limited to a region above thc level of the upstream free surface (figure 
1 b ) .  As shown by Peregrine & Svendsen (1978) this does not hold. The turbulence 
continues to spread downwards from its initiation at the toe of the front until i t  
reaches the bottom somewhere downstream of the jump (figure lc ) .  

This observation also differs from the assumptions made by Longuet-Higgins & 
Turner (1974). They considered the front of breaking waves and assumed that the 
turbulence was limited to the region with air entrainment (figure la) .  

Finally Johns (1980) considered periodic and single bores on a sloping bottom. The 
pressure was assumed to  be hydrostatic, and the non-stationary differential equations 
of mass, horizontal momentum, and turbulent kinetic energy were solved numerically. 
The model allowed for a non-equilibrium state in turbulent kinetic energy k ,  but 
included no generation of surface turbulence, and, in consequence, the resulting 
velocity distribution turncd out to be nearly uniform over the depth, obviously 
dominated by the bottom rather than by the free shear flow. 

Thus, in spite of the general impression that the hydraulic jump is a well-studied 
flow phenomenon, no proper theoretical model is available for the flow field. 

The present paper will describe a theory based on the observations described by 

__ 
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FIGURE 1. The extension of the shear flow in a bore: ( a )  Longurt-Higgins 
& Turner (1974); ( b )  Tsubaki (1950); (c) present model. 

Peregrine & Svendsen (1978). The basic assumptions will be presented and discussed 
in $ 2 ,  and throughout the presentation emphasis will be given to justifying the 
various simplifications and illustrating the sensitivity of the result to deviations from 
the conditions assumed. One assumption is to neglect deviations from static pressure 
(it is shown why this is acceptable), and we also assume a longitudinal lengthscale 
much longer than the vertical lengthscale. The resulting problem will resemble a 
boundary-layer problem with a pressure gradient. The conditions required for 
similarity solutions to such a problem are not satisfied (Falkner & Scan 1930) even 
for the (rather unrealistic) model based on a constant eddy viscosity., And Madsen 
(1981) showed that a more realistic turbulence model cannot change this conclusion. 

Instead the flow pattern is determined by the method of weighted residuals, which 
implies that  the basic equations are integrated over part of the water depth and 
satisfied a t  large. This is a generalization of the method that von Karman (1930) 
showed yields accurate results for the boundary layer over a flat plate. 

The depth-integrated equations and the solution for the velocity profiles are 
presented in $3,  and in $4 we discuss the turbulent closure and analyse some 
properties of the velocity field. It is shown how the flow model suggested can account 
for the effect of the free-surface turbulence in the roller and the non-equilibrium state 
of turbulent kinetic energy. 

In  $5 the free-surface profile is determined, and in $6 the surface profile and the 
velocities and shear stresses derived from the theory are compared with measurements. 
The agreement is shown to be quite satisfactory and deviations as well as discrepancies 
in the measurements available arc analysed. 

Some important details of the flow are investigated further in $ 7 ,  and the discussion 
in this section as well as in $8 includes a critical evaluation of the results. The 
conclusions are summarized in $ 8. 

There are three appendices describing in more detail some essential points in the 
main text. 

2. Preliminary considerations 
It is useful first to discuss the characteristics of the flow with the purpose in mind 

of introducing suitable assumptions. 
First we notice that, although Rajaratnam (1965) showed experimentally that the 

pressure variation is not static, the deviation will have a very small effect on the 
horizontal momentum balance (see appendix A).  Hence we adopt the assumption of 
static pressure, by which we also exclude the possibility of describing undular bores, 
“;hat is we assume that ff: 2 2.  
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X U , ( X )  

FIGURE 2 .  Definitions related to the flow considered. 

I n  close agreement with the actual flow pattern we shall also assume that the 
horizontal lengthscale for the flow is much larger than the vertical scale. This does 
not change the continuity equation, which reads 

au aw 
ax aZ -+- = 0, 

but the Reynolds equations governing general turbulent flow degenerate into the form 

(see figure 2 for definitions). Here 

u = U+U’, w = w+w‘ (2.3) 

are horizontal and vertical velocity components respectively, the overbar denoting 
ensemble-averaging and the prime representing turbulent fluctuations. This implies 
that the flow we consider (like a number of other turbulent shear flows such as mixing 
layers, wakes and various types of jets) is described by the boundary-layer equations 
with a pressure gradient. 

Some of the flows mentioned (viz. mixing layers, free or strong jets) have similarity 
solutions (see e.g. Rajaratnam 1976; Abramovich 1963), which for the present 
problem would be described by the fairly general expression 

u(x ,  2) = uo(x)  (1 +r (x) f (a ) )  (0 G a G I ) ,  

which has the four parameters uo, r, a and 6 .  
Here uo(x)  is the (horizontal) velocity outside the turbulent region, b is the height 

of that region, and z--a is the vertical height above its lower edge. 
Such solutions, however, exist only for certain types of flow (Falkner & Scan 1930) 

which are not satisfied in the present case (Madsen 1981). Thus we cannot expect an 
expression of the type (2.4) to satisfy the equations of motion in all detail. 

Instead of seeking such solutions we choose to  satisfy the equations ‘at  large’ by 
using an integral method which consists of specifying a suitable form of f(a) and 
require that the depth-integrated versions of (2.1) and (2.2) arc satisfied for all x.7 

t This method was first introduced by von Karman (1930) for boundary-layer problems and has 
in more general form become known as the ‘method of weighted residuals’ (ser e.g.  Finlayson 1972). 
For the boundary-layer type of problems it is known to yield results with z-variations that are 
remarkably insensitive to inaccuracies in the z-variations prescribed for the velocity profile a(%, z ) .  
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In  other words, total mass and momentum are conserved, and if our conjecture for 
the velocity variation with z (i.e.f(g)) is reasonable, many details will also be correctly 
reproduced. 

The physical assumptions used on the velocity profile in the turbulent region is 
that a t  the lower edge ( z  = a )  we must have the same velocity as in the non-turbulent 
flow, and a t  the same time the turbulent shear stresses 7,, must vanish. Thus we use 

and add 

8U 
u = uo(x) ,  - = 0 a t  z = a(x), ( 2 . 5 ~ )  aZ 

u = us(%) a t  z = d(x ) .  (2 .5b )  

This essentially introduces uo and us as two of the variables of the problem. 
Substituting this into (2.4) yields 

Forf(a) a third-order polynomial is used. When (2 .5)  is invoked this takes the form 

f ( c r ) = - ~ a 3 + ( 1 + ~ ) g 2  ( o < a <  I),  (2.7) 
with 

f(0) = 0, f(1) = 1 .  

The justification for this choice and the value of A will be discussed further in 
connection with the turbulent closure ($4). 

Outside the turbulent region we shall in this presentation only consider situations 
for which the velocity can be considered constant over the depth. This applies to the 
flow in front of the jump (which hence becomes of the type denoted ‘undeveloped 
inflow’ by Resch et al. 1976) as well as to  the region beneath the turbulent zone in 
the front part of the jump. 

Hence the bottom boundary layer and the associated bed shear stresses are 
neglected. These shear stresses will influence the height of the jump, particularly for 
large Froude numbers (see Harleman 1958). However, for 5= 8, say, the effect is only 
about 4% on the height and inside the jump the effect will be even less as i t  
accumulates downstream. 

Thus the flow pattern we consider has a core (see figure 1) with depth-independent 
velocities that  decrease downstream due to the increasing pressure. 

The complete velocity profiles prescribed are given by 

(0 c z < a) ,  

{ :::2,4) (a  < z < d) .  . 
u ( x , z )  = 

3. The integrated equations 
The assumptions introduced above correspond to a problem that contains four 

unknown quantities, for which i t  is convenient to choose the velocity u,(x) a t  the mean 
free surface, the velocity uo(x )  in the potential core, the thickness a(x) of that layer, 
and the total depth d(x). 

Hence we can satisfy four integrated versions of the basic equations. One must be 
the continuity equation, which can be written 
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We further choose to satisfy the equation of horizontal momentum integrated over 
the total depth and over the core region separately (which implies that horizontal 
momentum is also satisfied in the turbulent region separately). 

Invoking the assumptions introduced in $2 the two momentum equations may be 
written 

Qedz+&d2} = 0 total depth, (3.2) 

"{$&+gd}=O ax for a + O ,  13.3) 

where the latter is equivalent to the Bernoulli equation. Notice that it may be shown 
that, suitably transformed, (3.3) includes the effect of the entrainment of momentum 
from the core into the turbulent region. 

In  (3.2) the fact is utilized that although there is a strong surface turbulence there 
is no external force a t  the free surface, It is intended that details of the analysis of 
flow near the free surface will be presented in a further paper. It should be 
emphasized, however, that  this does not imply that the horizontal shear stress a t  z = d 
(of which A in (2.7) is a measure) is zero. Hence the value of A is still open for 
discussion. 

The fourth equation to be satisfied is the energy equation for the mean flow, which 
becomes 

(3.4) 

where the last term represents the loss of mean-flow energy due to production of 
turbulence. The evaluation of the right-hand side will be discussed in $4. 

As mentioned in 8 1 the turbulence spreads downwards from the surface until the 
turbulent region covers the full depth. Downstream of that point we have a = 0, which 
reduces the problem to the three unknowns u,, uo and d ,  and (3.3) is no longer valid. 

By integration of (3.1), (3.2) and (3.3) with respect to x and introduction of the 
velocity profile (2.8), the equations transform into simple algebraic equations in the 
three unknowns us, uo and a. The equations can then be solved in terms of the fourth 
unknown d for a given value of A .  Before doing so we notice that this is possible 
without choosing the turbulent closure, because the shear stresses in the fluid do not 
occur explicitly in the two momentum equations, but only in the energy equation 
(3.4). Hence solution of (3.4) will eventually yield the relation between d and x (i.e. 
d = d ( x ) ) .  

Solution of (3.1), (3.2) and (3.3) 
If we define the dimensionless mean velocity V as 

1" G(z )  dz  

the continuity equation (3.1) may (after integration with respect to z) be written 

where 

2 
Similarly (3.3) becomes 

v; = l+- ( l -C)  e 
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with 6 defined by ( l . l ) ,  and for (3.2) we get 

where 
(3.9) 

(3.10a, b )  

Using (2.8) in (3.5) and (3.10) yields 

(3.11) 
b 
d 

V =  i+r-s, = i+6s,, 

where 
a = [1+6(28,+8,r)] V - 2 ,  

f l  

S, f ( g ) d g  = &(A+4) ,  Jo 
8 2  J f ’ ( (a )dv  = &A2+7A+21). 

0 

(3.12) 

(3.13) 

(3.14) 

The procedure of solution is then: for chosen d and 6 we get 6 from (3.7), vo from 
(3.8), and V from (3.6). Then use (3.9) to  get a and determine 6 and r from (3.11) 
and (3.12) respectively. Finally the three dimensional unknowns uo, us and b are 
determined from (3.7), (2.6) and (3.11) respectively as 

(3.15) uO = u1v0, U, = u o ( l + r ) ,  b = -6, 

where, in addition to  6 ,  we must specify either d, or u,. These solutions then yield 
a, b,  uo and us for any properly chosen d (i.e. d, < d < d 2 ) ,  and hence also the velocity 
profile u ( z )  for the specified depth. But no information is so far available about the 
relation between d and x. To obtain that part of the solution we must solve the energy 
equation (3.4), which again requires specification of the turbulent closure. 

d 
r 

4. The turbulent closure 
The turbulent-closure mechanism, being empirical anyway, is chosen to be as 

simple as possible without sacrificing the important features of the flow. 
One aspect that  is considered significant is associated with the fact that  the bore 

turbulence is generated, convected (downstream), and essentially dissipated within 
a limited region of a few times the length of the roller. Hence, near the front where 
the turbulence starts there must be an excess of turbulence production relative to 
the dissipation, whereas further downstream the dissipation of turbulent energy E 

must have exceeded the production. 
This pattern is quite clearly illustrated if we compare the variation of the 

production and the dissipation from the measurements by Rouse et al. (1958). This 
is shown in figure 3. 

To model this feature a t  least qualitatively correctly means to allow for non- 
equilibrium in the turbulent kinetic energy, which is defined as 

_ _ -  
k = + ( u ’ ~ + v ’ ~ + w ’ ~ ) .  (4.0) 

On the other hand i t  is considered reasonable to  assume local equilibrium in the 
turbulent shear stresses u‘w’, since from a given non-equilibrium condition the 
various turbulent quantities relax towards local equilibrium a t  various rates when 

- 
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Production 
F ,  = 2  , Dissipation 

L 
0 1  2 3 4  5 

FIQURE 3. The variation with x of the depth-integrated production and dissipation 
of turbulent kinetic energy k ,  based on measurements by Rouse et al. (1958). 

given the opportunity, And the shear Reynolds stresses are known to relax faster than 
either of the normal stresses and k. This implies (see Launder & Spalding 1972) that 
we write 

which is equivalent to using a closure model of the Boussinesq type with 

Launder & Spalding (1972) also suggest that E in addition to k depends on a mixing 
length, which we will choose here as d-a. Hence we introduce for E 

which in (4.2) yields 

k4 
d-a’ 

EK- 

ut K ki(d-a). 

By these assumptions we have reduced the turbulent-closure problem to the 

To do so we consider the transport equation for k, which (invoking the previous 
problem of determining k. 

assumptions) may be written 

Here and in the following all Rs are empirical turbulent constants (see Launder & 
Spalding 1972). 

Equation (4.5) is then integrated vertically over the turbulent region. In  appendix 
B are shown the details of the derivation, which yields 
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Here the first term on the right-hand side represents the production of turbulent 
kinetic energy, the last the dissipation. Thus non-equilibrium for k corresponds to 

f d  

I n  harmony with (2.4) we now assumc a similarity profile for k of t’he form 

kj = X ( x ) g ( r ~ ) ,  (4.8) 

which substituted into (4.7) together with (4.2)-(4.4) and (2.7) yields that the 
x-variation of k must have the form 

where the bracket is a constant for specified g(a), and where uo-us > 0. 

theory in which 
For A = 1 (local equilibrium in k) the model reduces to a Prandtl mixing-length 

(4.10) 
au 

ki - (d -a )  Ix/ - f’(a) (uo-us). 

Hence it is natural to use g(a) = f’(cr), which then yields 

ki = Q ~ A ( u O - u s )  f’(g), (4.11) 

and from (4.4) and (4.2) we also get 

where 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

The turbulence model thus introduced is a simplified k-E model in which we may 
either determine A(z) from (4.6) or use the empirical information illustrated in figure 
3 to specify a reasonable algebraic closure for A. This is discussed further in $ 5 .  

By the derivations above we are also able ~ to justify the form (2.7) chosen forf(a) 
by comparing the z-variation for ii, k and u‘w’ with measured values, and a t  the same 
time to discuss proper values for A .  

Such a comparison is shown in figures 4-6. The measurements are taken from Rouse 
et al. (1958), Battjes & Sakai (1981), and a few from our own measurements to be 
described below. In  figure 5 i t  is assumed that a k so that these two have the same 
z-variation. 

I n  essence, the coefficient A represents dulaz a t  the free surface, since 

f’(1) = 2-A.  

In  particular A = 2 corresponds to du/& = 0 a t  the (mean) free surface, which is 
the usual assumption in free-surface flows, corresponding to vanishing shear stresses 
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FIGURE 4. Measurements of 7 f .  Rouse et al. (1958) (F ;  = 4: V, d / d ,  = 1.75; A, 2.10; 0, 2.25). Own 
measurements (F: = 387):  *. Battjes & Sakai (1981): 0 ,  z = 060 m ;  x ,  090 m ;  V, 1.20 m, +, 
1.60 m. 

U 

0.5 

0 

FIGURE 5.  Measurements of ( z ) i .  For symbols see figure 4. 

there. A = 2 corresponds to  the profile used by Tsubaki (1950) above z = d,. Madsen 
& Svendsen (1979), however, showed that in the highly turbulent region of the surface 
roller the shear stresses will be non-zero a t  the local mean water level d(x). So to model 
this effect we must choose A < 2 .  Accordingly, in the three figures we have shown 
curves that result from applying A = +, 1 ,  1.4 and 2 .  

When drawing conclusions from the figures, however, it  should be recalled that the 
only measurements available near the surface (namely Rouse et al. 1958) were taken 
in air flow in which the ‘surface’ was represented by a solid wall shaped after 
measurements in a real hydraulic jump of the same strength. Hence by definition u12 
must be zero at (r = 1 (which means that the non-zero measurements shown for u12 
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FIGURE 6. Measurements of m. Battjes & Sakai (1981): 
0,  5 = 2.00 m. For other symbols see figure 4. 

correspond to CT slightly less than 1 ) .  Therefore the measurements of Rouse et al. are 
not really relevant near the (free) surface. The measurements from Battjes & Sakai 
(1981) clearly show that downstream of the roller (z > 0.9 m) u’w’ nearly vanishes 
a t  the free surface as in ordinary free-surface flow. 

In  the roller Battjes & Sakai have no actual measurements near the surface, but 
those available clearly indicate a finite surface value for u’w‘. To illustrate the effect 
of different values of A ,  we will in the following give results for A = 1,1-4 and 2, where 
these differ appreciably. 

__ 

__ 

5. The surface profile 
The surface profile of the jump may be found by solving the energy equation (3.4) 

for the mean flow. At the same time A(z) must be determined, in principle from the 
equation (4.6) for the turbulent kinetic energy. 

We first substitute (2.8) into (3.4) and define the coefficient p by 

where U is given by (3.10b) and 

r i  
8, ~ , ( c T ) ~ c T  = &(A3+10A2+45A+120).  

J O  

Then (3.4) becomes 

With U eliminated by means of the continuity equation, and 5 introduced from 
(3.7), (5.3) mag be written 

(5.4) 
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X = x/d, (5.5) 
and defined 

I n  a hydraulic jump < is a monotonic function of x, and, since from (5.1) p is a 
function of 5 and 6 only, we may write 

Substituting (5 .7 )  into (5.41, that  equation may be written 

where 
(5.8a) 

(5.8b)  

which is a first-order ordinary differential equation for < = <(x/d,). 
From (4.14) we see that Pk is proportional to A(%). I n  appendix C i t  is shown that 

a simple algebraic closure for A yields results for the surface profile that  differ only 
slightly from the result obtained by solving the equation (4.6) for the turbulent 
kinetic energy. 

Hence we have chosen to use the algebraic closure from appendix C :  

(5.9) 
A = -  UO 

uo-us 

and the results shown in the following are obtained with (5.9). 
Notice that (5.9) satisfies the primary requirement that  near the front the 

production of turbulent energy dominates (A < l ) ,  whereas further downstream the 
dissipation is larger. 

Figure 7 shows a comparison of the produetion and dissipation of turbulent energy 
from (5.9) with the measurements of Rouse et al. Considering the uncertainties of the 
measurements and the fact that  the flow investigated by Rouse rt  al. was not a real 
hydraulic jump or bore, the agreement must be considered adequate. 

The introduction of (5.9) for A also implies that only one turbulence constant R, 
is required, which essentially means determining the production of k a t  one point. 
This is done by comparing theoretical and measured surface profiles, and the simplest 
form for the equations are obtained if we consider values a t  the toe (x = 0) of the 
turbulent front. 

It may be shown that for x + 0 we get 

8, 4 r + ro = ----uo-u, -+-u0, 
5 - 0  8, 1% 

and since (5.9) implies A = -J?l we also have 

(5.10) 

(5.11) 

Using this together with (4.14) in (5.6), and recalling that u, -+ u, for x -+ 0 we find 

8 2  

2'0 8, 
A 4 A o = - .  

x - 0  

with S,, given by (4.15). 

(5.12) 
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FIGURE 7. Comparison of production and dissipation of turbulence with 
measurements of Rouse et al. (1958): *, production; 0, dissipation. 

Comparison with measurements then shows the best agreement if Pko = 0.03, 
whence 

Q, (5.13) 

It is useful to compare this result 
Equation (5.13) corresponds to 

- . . .. 

with similar results for jets and mixing layers. 

0.024A ( A  = 2), 

Prom Rajaratnam (1976) we find the following experimental results: 

0.023 free plane jet, 
0.018 free circular jet, 

0.009 plane mixing layer, 
0.01 1 compound mixing layer, 

0.026 compound jet, 

where Au represents the maximum velocity deficit corresponding to  uo - us. We see 
that for A x 1 (which is true in a large part of the flow region) (5.14) is in good 
agreement with the results from other types of shear turbulence. 

The profiles were determined by a numerical integration of (5.8) using (5.13) for 
Q. With the algebraic closure used for k, R, is the only empirical constant required. 

6. Comparison with measurements 
The theoretical surface profiles are compared with measurements in figures 8 and 

9 for ff; x 3.9 and 8.55 respectively. For F: x 3.9 three different investigators have 
measured the surface elevations, and we see there are some discrepancies between 
their results. 

The points denoted ‘own measurements’ were obtained in a 15 ern wide flume in 
a steady hydraulic jump generated downstream of a sluice gate (which implies that  
the inflow was ‘undeveloped’). The measurements were taken with a resistance 
transducer consisting of two gold-covered silver wires with diameter 017 mm and 
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I x '  x 
d -d, 

A n x  

0.5 

0 1 2 3 4 5 6 I 8 
xl(d,,, 4 1 )  

FIGURE 8. The surface profile for fff x 3.9: a, Bakhmeteff & Matzke (1936) ( f f f  = 3.94); 0, Rouse 
et al. (1958) (F :  = 4) ; x , own measurements (e = 387) .  Bars on x -points indicate extreme range 
of mean surface elevation over the 4-6 min measuring period. ---, theory with A = 1.4 (Ff = 3.95); 
--, theory with A = 1.0 ( F :  = 3.95). 

placed 5 mm apart. The electric signal was filtered to  reduce the turbulent fluctua- 
tions, and measurements were taken over several minutes. The distance to the front 
of the jump was measured for each position of the transducer as the position of the 
jump was slightly sensitive to the disturbance represented by the transducer. 

We see that the curves corresponding to A = 1 and 1.4 respectively are hardly 
distinguishable, although A = 1 does yield a slightly closer fit to  the measurement 
in the roller region, which is in accordance with the discussion about the value of A 
in $4. This also confirms the expectation that the x-variations should be rather 
insensitive to variations in the prescribed velocity profiles, 

As will be seen from (5.8) the rate of increase in the surface elevation is proportional 
to the local energy dissipation. Therefore when we observe that the theoretical profile 
is slightly lower than the measured profile in the downstream end of the jump this 
indicates that in that region the theoretical mean energy dissipation is a little smaller 
than in the experiment. The deviation is of the same order of magnitude as the 4 % 
caused by the accumulating effect of the bottom shear stresses (see $2)  which were 
neglected in the theory. For ff: = 8.55 (figure 9) we only have Bakhmeteffs data. The 
deviation here is slightly larger, but this should be considered in connection with the 
observation that for fff zz 3.9 (figure 8) where Bakhmeteffs measurements can be 
compared with other sources, they tend to  be somewhat on the high side. 

In  the experiments mentioned above measurements were also taken of the mean 
velocity in a large number of points. A 5 mm 3-bladed micropropeller was used for 
this purpose, and again the results were obtained as the mean over several minutes. 
As the propeller cannot measure in air-entrained water, the scale of the experiment 
was kept small enough to prevent significant air-entrainment in the roller. (Hence 
the measurements also form an experimental verification, if needed, of the fact that 
the turbulence in a hydraulic jump can exist without air entrainment.) 

In  figure 10 the results of the measurements are compared with the theoretica1 
solution described above. It has been checked that these results within theexperimental 
accuracy satisfy the continuity equation for each velocity profile. 

A single value of the mean surface velocity in the roller has also been included. 
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FIGURE 9. The surface profile for Ff = 885;  x , Bakhmeteff & Matzke (1936) 
( Q  = 855); ---, theory with A = 1.4; -, theory with A = 1.0. 

It was obtained by measuring on small flamingo foam particles floating on the surface. 
We see that within the accuracy of the measurements the general tendency in the 
theoretical velocity profiles is quite well confirmed. 

We also notice that the difference between the profiles corresponding to A = 1 and 
2 respectively is actually negligible in the downstream region simply because T(x) 
in (2.8) is so small there. This confirms the decision to choose A to fit the roller profiles. 

The theoretical results have also been compared with the measurements of Rouse 
et al. (1958) (figure 11) and those of Resch & Leutheusser (19723) (figure 12). 

As mentioned previously the experiments of Rouse et al. were made in a wind tunnel 
with the free surface simulated by a solid wall. The resulting flow is actually a diffuser 
in which the shear force should change sign a t  the (free-surface) wall, and (in 
particular the vertical) turbulent velocity fluctuations will vanish there. 

Thus the flow especially near the free surface is significantly different from that 
in a bore or hydraulic jump, and therefore we cannot expect the shear stress and 
velocity measurements to be representative, in that  region. From figure 1 1  this seems 
to apply particularly to  the velocities. 

Figures 11 and 12 both show significantly larger deviations for the velocity profiles 
than was found in our own measurements. Some of the cases (e.g. figure 12a), 
however, may be due to errors in the measurements. On the other hand, the basic 
idea of a turbulent layer spreading from the surface is quite clearly confirmed. 

It must also be concluded that the value of A cannot be determined from the 
experimental results available, a t  least not with any further confidence than was 
obtained from the discussion in $4. 

The measurements in figure 10 also justify the initial assumption to neglect the 
effect on the flow field of the bottom boundary layer. We see that the hydraulic jump 
behind a sluice gate shows no significant boundary layer in front of the jump (figure 
lo,& = (d --dl)/(dmax-d1) = 0 )  and even far downstream the boundary layer has not 
really developed yet. 
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FIGURE 1 1 .  Comparison with measurements by Rouse et al. (1958) (ff: = 4). 
_ _ _  , A = 2;  -, 1 .  (a )  d /d ,  = 1.75; (3) 2.10; (c) 2.25. 
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FIGURE 12. Comparison with measurements by Resch & Leutheusser (19723) ( F ;  = 8.12) 
_ _ _  , A = 2. (a )  x/d, = 7.1 ; (3) 12.5; (c) 17.8. 

7. Discussion of some characteristic flow details 
The theoretical model developed above will predict many of the characteristic 

details in a bore or hydraulic jump, some of them more realistic than others. 
First of all the streamline pattern may of coursc be derived from the solution. An 

example is shown in figure 13 for IF2 = 2. Notice that the dividing streamline 
separating the region of recirculation (the roller) does not coincide with the limit of 
the turbulent region. This limit is not even a streamline as there is a significant 
entrainment into the turbulent region. 

What cannot really be seen is that there is a slight discontinuity in the slope of 
the streamlines right under the toe of the turbulent front. This is discussed further 
below. 

In  figure 14 is shown the variation of the lower limit of the turbulent region 
(described by a - see figure 2) for different Froude numbers. One of the interesting 
details is that for small Froude numbers a is increasing immediately after the start 
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FIGURE 13. The streamline pattern in a bore/jump with Fl = 2 ;  A = 2. 
A, Measurements by Bakhmeteff & Matzke (1936). 

FIGURE 14. Streamwise variation of the distance from the bottom 
t o  the lower limit of the turbulent region. 

of turbulence, which means that although the turbulence is spreading downwards 
from the surface the slope of the surface is larger. This situation may be recognized 
in some of the photographs in Peregrine & Svcndsen (1978). The larger the Froude 
number the steeper the increase in the turbulent region. 

The effect of the turbulence in preventing the bore front from gradually steepening 
as i t  propagates (as i t  would in the nonlinear shallow-water theory with static 
pressure and a depth-independent velocity profile) is expressed by the way the total 
horizontal momentum is conserved a t  any point in the jump. The equation describing 
this is (3.9), which shows that to obtain momentum balance a t  any point (with the 
permanent form assumed in that equation) the velocity profile must deviate from the 
z-independent profile in such as way that a varies as prescribed by that equation. 
This requires a transfer of momentum upwards from the lower layers in the jump 
and this is exactly what the turbulence causes. Figure 15 shows the a-variation 
required according to (3.9). 

Hence we must imagine the interaction between the turbulence and the shape of 
the bore or jump is such that if the front is too steep the surface water will rush faster 
down thc slope to create more-violent turbulence as i t  meets the incoming water a t  
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FIGURE 15. The variation of a according to (3.9). 

the toe. I n  the theory described above this is heuristically modelled by using A 
proportional to the difference us - u,, between surface and bottom velocities. The 
details, however, of how a deviation from the stable profile is stabilized by the 
turbulence cannot be analysed in the present formulation of the theory, which 
assumes permanent form. It will be discussed in a later paper. 

It is worth mentioning another feature of the theoretical model associated with the 
flow around the front. I n  the model the flow upstream of the toe cannot feel the coming 
front. I n  this sense the model is a shock model, which is of course not in accordance 
with the assumption of incompressible potential flow outside the turbulence region. 
In  reality, the pressure change represented by the front will be felt also upstream 
of the toe, which can also be seen from the abovementioned photographs, where 
a weak rise in the water level occurs in front of the turbulent bore with a similar slight 
change in the streamlines. It is the omission of this effect that causes the 
abovementioned discontinuity in the slope of the streamlines. 

Other, but physically more reasonable, discontinuities occur a t  the front. Thus the 
surface velocity us is finite even at the toe. This is not in conflict with continuity, 
as the thickness of the layer (the ‘roller’) with this property tends to zero as x --* 0’. 
Figure 16 shows this property in terms of r, which is part of the solution. The value 
of r a t  x = O+ is given by (5.10) and also the value of other quantities may be 
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FIGURE 16. The variation of the surface velocity represented by r = (us-uo)/u,,. 
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FIGURE 17. Length L,, of the roller as a function of 6.  

determined a t  the toe. Of particular interest is that  the surface slope Q is given by 

which shows that the bore or jump is steeper the smaller the Froude number 6. 
Finally the 'length of the roller' L,, may of course be determined from the results 

as the value of x for which us = 0. But, as one physically feels that this quantity is 
very sensitive to small changes in the flow pattern, so the computations show that 
it depends quite strongly on the value of A .  As figure 17 shows, measurements of L,, 
confirm this transitoriness. 

8. Summary and conclusions 
The model developed for bores and hydraulic jumps is based on satisfying the 

hydrodynamic equations ' a t  large ' by considering the equations integrated over the 
depth (or part of the depth). This is combined with an assumption of static pressure, 
which is shown to be well justified (see appendix A), and with a specification of the 
vertical variation of the velocity profile (2.8) and (2.7). A qualitative illustration of 
the flow pattern is shown in figure 2 .  

In  the turbulent region a closure model is used which allows non-equilibium in the 
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turbulent kinetic energy k .  The final closure used for k is algebraic (implying that 
only one empirical constant QT describes the turbulence), but in appendices B and 
C the depth-integrated transport equation for k is derived and solved to show that 
little is gained by this more elaborate procedure. 

Finally the results for both the surface profile and the velocity and shear-stress 
variations are compared with measurements. 

A number of conclusions may be drawn from the analysis and the comparisons. 
It is shown by varying the prescribed velocity profile (by changing the constant 

A )  that  the surface profile is insensitive to the precise form of the velocity profile. 
There is good agreement with measurements for rather different A-values. 

On the other hand, the comparison with, in particular, our own measurements 
shows that the prescribed vertical variation of the velocities is in good agreement with 
measurements. 

Yet insufficient information is available about both velocities and shear stresses 
near the surface where the flow is dominated by gravity and the high-intensity surface 
turbulence. Hence there is a need for measurements in that region. 

The bottom boundary layer and shear stresses have been neglected, which is 
natural in a bore and is shown by the measurements to be a good approximation for 
a jump behind a sluice gate. By restricting the analysis to  such flows we also avoid 
the problem of separation of the bottom boundary layer due to the adverse pressure 
gradient under the jump (or even formation of a standing vortex near the bottom), 
which may occur in cases of a 'fully developed' inflow. 

Finally i t  may be added that since the flow far downstream of the jump or bore 
returns to  the steady uniform free-surface flow both the total height of the jump and 
the total power dissipation are determined by the classical formulas known from the 
hydraulic textbooks. 

Appendix A 
The deviation from static pressure will change the total momentum in any vertical 

section. In  this appendix it is shown that the change is negligible. 
The total momentum, assuming a static pressure distribution, is 

Ms = apU2d +$gd2, (A 1) 

where a is defined by (3.10). 

& Svendsen 1979) 
In  fact, the pressure is non-hydrostatic. The pressure is given by (see e.g. Madsen 

p ( z )  = puwdz+terms from the surface turbulence. (A 2) 

At the bottom we have p = pb and w = 0, so that 

Rajaratnam (1965) finds experimentally for all x that  p b  x pgd, so that we must 
have (a/ax) j," puw dx = 0. Now U and W have the same sign a t  all points, so since a/ax 
of vertical turbulent shear stress Su'w'dz is negligible we have 

a d  
puwdz x azJ2 pUiEdz = 0. 
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Hence (A 2) becomes 

or 

which shows that the deviation from static pressure is represented by w2/gd. 
Rajaratnam (1965) finds that for a jump with 6 = 2-86 the maximum deviation from 
static pressure is x Olp, .  Part  of this contribution is due to  3, the rest (near the 
surface particularly) is caused by the turbulent fluctuations 3. Therefore we get 
corresponding to (A 1) for non-hydrostatic pressure 

If, inspired by Rajaratnam’s (1965) graph, we assume (for the F,  = 2.86) jump 

we get 

where P = P / g d  varies streamwise between F: > 1 in the front of the jump and 
Fi < 1 downstream of the jump. Since w2/gd x 0.1 is a maximum value occurring 
under the roller it is natural to  combine this with Fx 1, which yields (with a x 1-4, 
see figure 15) M 

- = 0.968, 
Ms 

i.e. the deviation from static pressure contributes a t  most 3.2% to the total 
momentum, or about 1.6% to the depth. 

Finally we notice that since w/ U varies only slightly with the strength of the jump 
we must have w2/gd K P so that  the above analysis holds a t  least for a wide range 
of jumps. 

Thus we conclude that the deviation from the static pressure will have very little 
effect on the momentum balance. 

Appendix B 

since the flow is steady, for the term on the left-hand side 
Equation (4.6) is found by integrating (4.5) over the turbulent region. This yields, 

the latter being obtained by means of the continuity equation and k = 0 a t  z = a.  
The Leibnitz rule then gives 

where the kinematic free-surface condition 

w-uqz = 0 
has been invoked. 
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For the first term on the right-hand side of (4 .5)  we get directly 

where k = 0 at z = a .  The value of the result a t  z = d represents the net diffusion of 
k through the mean free surface due to the turbulent surface fluctuations. Since only 
a small fraction of the energy dissipation occurs above z = d this contribution is 
negligible. Hence we arrive a t  the depth-integrated transport equation 

which is (4 .6) .  This also implies that  the value of 51, in (4 .5)  becomes irrelevant. 

Appendix C. Solution of the transport equation for k 
The depth-integrated transport equation for k (4 .6)  may be transformed into a 

differential equation for A2 (defined by ( 4 . 7 ) )  by the following operations. 
First we eliminate Pk defined by (5.6) between (4 .6)  and (5 .8)  and get 

We then transform to 5 as independent variable (see the comments in $5)  to  obtain 

a d  
% f a  Gkdz = ( 1 - A 2 ) u ; F d l .  

Substituting (2 .4)  and (4.11) for u and k then yields 

S,, f(c)f”(a) d a  = &(A3 + 8A2 -32A + 96). (C 3e)  fol 
Equation (C 3 a )  is the required equation for A2. 4 and F, are functions of the other 
variables uo, us and b. Hence the inclusion of this equation means that the model 
consists of the algebraic equations in $ 3  plus the two simultaneous differential 
equations (5 .8)  and (C 3 a ) .  

The inclusion of (C 3 )  requires an (extra) boundary condition for A, and it  is natural 
to specify the value of A at the toe of the jump, i.e. 5 = 1 .  Here one would expect 
both dissipation and production of turbulent energy to grow with the size of the 
turbulent region so that their ratio A may have a limiting value for 5 + 1 ,  which could 
be used as the boundary condition for (C 3 a ) .  

It turns out, however, that  Fl + 0 so that (C 3 a )  is singular a t  5 = 1 .  The inner 
c- 1 
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FIGURE 18. Comparison between solution with algebraic closure (C 7) and with transport equation 
(C3). F: = 4, A = 1.4, a, from (5.13). 0 :  A =uo/(uo-u , ) ;  A, transport equation for A, 
a, = 00754; 0, transport equation for A, a, = 0.01. 

approximation of (C 3a)  valid for small 5 = c- 1 may be written 

where 

cz dA2 A' -+-el = -, 
d5 5 5 

which has the complete solution 

(C 5) 
C 

A2 = A+C5-c1 (c+ 1). 
Cl 

Hence if we wish to keep A2 bounded for 6 + 1 we must use C = 0 (since C, > 0), 
which corresponds to d A 2 / d t  + 0 for c + 1, and (C 5) becomes 

The value of cannot be deduced from the measurements available, but if (C 6) 
is going to equal the value of the algebraic closure 

(C 7)  
A=--- UO 

UO - Us 

a t  5 1 then we must have !& = 00754. It may be shown that, this value is slightly 
larger than the value in jets and mixing layers, where we find 0.015 < a k  < 0.055, 
and also larger than the value of 0022 < a k  < 0044, which can be derived from the 
experiments of Rouse et al. (1958). 

Figure 18, however, shows a comparison between the surface profiles obtained by 
using (C 7),  and (C 3a)  with the boundary condition (C 6) respectively. For the latter 
case is shown the result for two rather different values of Qk (0.01 and 0.0754), and 
we conclude that the solution using (C 7) is as accurate as the more elaborate 
differential closure described by the transport equation for k, which in itself is not 
very sensitive to the value of Qk. 
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